
Block Diagrams, Feedback and Transient 
Response Specifications 

This module introduces the concepts of system block diagrams, feedback control and transient 

response specifications which are essential concepts for control design and analysis. 

(This command loads the functions required for computing Laplace and Inverse Laplace transforms. For more information on Laplace 

transforms, see the Laplace Transforms and Transfer Functions module.)

Block Diagrams and Feedback

Consider the example of a common household heating system. A household heating 

system usually consists of a thermostat that measures the room temperature and compares

it with an input desired temperature. If the measured temperature is lower than the desired 

temperature, the thermostat sends a signal that opens the gas valve and starts the 

combustion in the furnace. The heat from the furnace is then transferred to the rooms of the 

house which causes the air temperature in the rooms to rise. Once the measured room 

temperature exceeds the desired temperature by a certain amount, the thermostat turns off 

the furnace and the cycle repeats. This is an example of a control system and in this case 

the variable being controlled is the room temperature. This system can be sub-divided into 

its major parts and represented by the following diagram which shows the directions of 

information flow. This type of diagram, known as a block diagram, is very useful in 

understanding how the different components interact and effect the variable of interest. 

Fig. 1: Block diagram of a household heating system



The gas valve, furnace and house can be combined to get one block which can be called 

the plant of the system. In general, the plant is the aggregate part of a system that takes the

control signal from the controller as an input and outputs the variable being controlled.  

Fig. 2: System plant

Fig. 3 shows the general block diagram for a system with feedback control. Feedback refers

to the returning of the measurements of a controlled variable to the controller so that it can 

be further used to influence the controlled variable.

Fig. 3: Block diagram with feedback

If the system equations can be written such that its components only interact such that the 

output of one component is the input of another, then the system can be represented by a 

block diagram of transfer functions in the Laplace domain (see Fig. 4). This is a very useful 

tool because it facilitates in obtaining the equations of a system (including the effects of a 

controller) and studying its behavior. 



Fig. 4: Block diagram of transfer functions

In Fig. 4  is the reference signal,  is the error signal,  is the controller transfer 

function,  is the control signal,  is the disturbance signal,  is the plant transfer 

function and  is the output signal. From the definition of a transfer function (see the 

Laplace Transforms and Transfer Functions module) the following part of the diagram

Fig. 5: The controller block

is equivalent to the equation

... Eq. (1)

In words, this means that, in the Laplace domain, the input signal multiplied by the transfer 

function gives the output signal. Similarly, the following part of the diagram 



Fig. 6: The plant block

is equivalent to the equation

... Eq. (2)

Using Eqs. (1) and (2), the following equation for the relation between the error signal and 

the output signal can be found. 

... Eq. (3)

This shows how the block diagram can be used to relate different inputs and outputs. This 

process is continued to obtain the relation between the reference signal  and the output 

. The following part of the diagram



Fig. 7: Error signal

is equivalent to

... Eq. (4)

Eqs. (3) and (4) can be combined to get

... Eq. (5)

This equation can be rewritten as

... Eq. (6)

or

... Eq. (7)

If there is no disturbance ( ), then 



... Eq. (8)

and the equivalent system diagram is

Fig. 8: Equivalent system diagram

Here

 

... Eq. (9)

is called the closed loop transfer function. This is because it includes the effects of the 

feedback loop. From this it can be concluded that if the plant transfer function  and the 

controller transfer function  are known, then the reference input can be multiplied to the

closed loop transfer function to obtain the output of the system (the inverse Laplace 

transform of this would give the time response). 

Transient Response Specifications

The step response of a system is an important performance characteristic because it 

determines how quickly and accurately a system responds to changing inputs. The following

specifications are commonly used to define the performance/ requirements of a system's 

step response. 



Definitions

Rise time

The rise time  is defined as the time it takes the transient response to move from 
10% to 90% of the steady state response.

 Rise time Rise time

Fig. 9: Rise time

Maximum Overshoot

The maximum overshoot  is the percentage by which the maximum value  of 
the transient response exceeds the steady state value . 

... Eq. (10)

 Maximum overshoot Maximum overshoot



Fig. 10: Maximum overshoot

Peak Time 

The peak time is defined as the time at which the maximum overshoot occurs.

 Peak time Peak time

Fig. 11: Peak time

Settling Time

The settling time is defined as the time after which the output is within a specified 

steady state value.



 Settling time Settling time

Fig. 11: Settling time

First Order Systems

The following is the characteristic form of a first order system.

... Eq. (11)

Here  is the controlled variable,  is the input and  and  are constants. 

In the Laplace domain, the characteristic form is

which can also be written as

... Eq. (12)

by replacing . 

DC Gain, 

The constant  is called the DC gain of the system and is defined as the ratio of the 



magnitude of the steady-state output of the system to the input. For a unit-step input  (

),

If,  and , the following plot shows the system response to a step input.

 Step response of a first order system Step response of a first order system

Time Constant, 

The parameter  is called the time constant of the system and is a measure of the 

speed of the response. The step response of a first order system is



(2.2.2.2)(2.2.2.2)

(2.2.2.1)(2.2.2.1)
and the slope at  is

A larger time constant means that the system response takes a longer time to rise.

The time constant and DC gain of a first order system can be varied using the gauges 

(below) to see the effect on the unit-step response of the system.

 

DC 
Gain, 

Time 
constant, 

Response Specifications for a First Order System

As shown above, the time response of a first order system to a step-input is



(2.2.2.1)(2.2.2.1)

... Eq. (13)

Rearranging for t,

... Eq. (14)

This equation can be used to find equations for the rise time  and the settling time . 

The maximum overshoot  and peak time  are not defined for a first order step 

response because there is no overshoot and hence no peak. 

Rise time

The rise time is defined as the time it takes for  to go from  to ,

 = 

... Eq. (15)

Settling time

The settling time for a 

 = 

... Eq. (16)



(2.2.2.1)(2.2.2.1)

Second Order Systems

The characteristic form of a second order system is

... Eq. (17)

In the Laplace domain, this can be written as

... Eq. (18)

Here,  is called the damping ratio,  is called the natural frequency and  is the DC 

gain. (A second order system is analogous to a spring-mass system with damping. See 

the Intro. to Vibration modules for more information). The poles of this transfer function 

(for ) are

... Eq. (19)

This shows that the system will have an oscillatory response to step and impulse inputs. 

Assuming that , the impulse response ( ) is

... Eq. (20)



(2.2.2.1)(2.2.2.1)

And the step response ( ) is

... Eq. (21)

where . Since the frequency of the oscillations is , this is also 

known as damped frequency . Fig. (12) illustrates the relation between the parameters 

and the pole locations. 



(2.2.2.1)(2.2.2.1)

Fig: 12: Pole locations of a second order system

If , then the system responses will have different forms than the ones shown above 

(without any sinusoidal terms). In most dynamic systems of interest (there are many 

exceptions) the damping ratio is not higher than 1 which is why the response of a system

with  is of more interest.   

Response Specifications for a Second Order System

Rise time

Due to the lack of a simple analytical equation for the rise time of a second order 

system, the following are some of the approximations that are commonly used 

(with increasing level of accuracy). 

... Eq. (22)

... Eq. (23)

... Eq. (24)

Settling time



(2.2.2.1)(2.2.2.1)

... Eq. (25)

Peak time and maximum overshoot

It is easier to find an analytical expression for the maximum overshoot. The slope 

of the response curve at the point of maximum overshoot is zero (the first 

derivative is zero). In the Laplace domain, taking a derivative is equivalent to 

multiplying by . So for a step response, the impulse response is the slope and is 

equal to zero at the peak time.

Equating the impulse response to zero gives

... Eq. (26)

which occurs when

... Eq. (27)

which implies that

... Eq. (28)



(2.2.2.1)(2.2.2.1)

Since the maximum over shoot happens the first time that the slope is zero, 

... Eq. (29)

This can be substituted into Eq.(21) to get 

... Eq. (30)

Therefore, the maximum overshoot is 

... Eq. (31)

For the following plot, the complex plane (below right) can be used to change the 

locations of the complex poles of a second order system (with ) and see the effect 

on the system specifications. (Click somewhere on the complex plane or drag the poles)



(2.2.2.1)(2.2.2.1)

  

Damping ratio Natural frequency Damped frequency

rad/sec
rad/sec

Rise time Settling time (5% 
band)

Peak time Maximum overshoot

sec sec sec %

Example 1

Problem Statement: The transfer function of a plant is . 

Find:

a) the rise time 

b) the 5% settling time 

c) the percent overshoot 

d) and the peak time 

Solution:



(3.2.1)(3.2.1)

(3.1.1)(3.1.1)

(3.3.1)(3.3.1)

(2.2.2.1)(2.2.2.1)

(3.1)(3.1)

To begin, the natural frequency and damping ratio of the system need to be found. 

Comparing the transfer function to the form of Eq. (18), the natural frequency is

and the damping ratio is 

1
2

(Here  is defined locally because it is a protected name in Maple) 

These two parameters can be used to find the specifications:

Part a) The rise time

Using Eq. (24), the rise time (in seconds) is

0.5069666667

Part b) The settling time

Using Eq. (25), the 5% settling time (in seconds) is

2.133333333

Part c) The percent overshoot

Using Eq. (31), the percent overshoot is

at 5 digits



(3.4.1)(3.4.1)

(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

(3.4.2)(3.4.2)

16.303

Part d) The peak time

Using Eq. (29), the peak time (in seconds) is 

at 5 digits

1.2092

Example 2

Problems Statement: A proportional controller is added to the system of Example 1, as 

shown in the following block diagram. 

Fig. 13: System transfer function with proportional control

What should the value of  (proportional control gain) be to reduce the percent overshoot 

to 10%? Plot the step response for the system with and without the proportional control after

determining the required  value. 

Solution:

The closed loop transfer function in this case is



(4.3)(4.3)

(4.9)(4.9)

(4.7)(4.7)

(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

(4.5)(4.5)

(4.6)(4.6)

(4.1)(4.1)

(4.8)(4.8)

(4.4)(4.4)

(4.2)(4.2)

First, Eq. (31) is used to find the value of the required damping ratio :

at 5 digits

0.59115
Therefore, the required damping ratio is

0.59115

Comparing the closed loop transfer function to Eq. (18),

2.537427049
Therefore, the required natural frequency is

2.537427049
Once again, comparing the closed loop transfer function to Eq. (18),

Therefore, the gain of the proportional controller has to be negative to reduce the 



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

percentage overshoot. However, this also pushes the steady state response of the system 

farther away from the input value and makes it negative. 

From this it can be seen that even though the percent overshoot decreased, the steady-

state output of the system is farther away from the input value than before.  



(5.1.1)(5.1.1)

(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

Example 3 (with MapleSim)

Problem Statement: A Proportional-Derivative (PD) controller is a type of controller that 

reacts proportionally to the error and rate of change of error. A PD controller is added to the 

transfer function of Example 1 as shown in the following diagram.

Fig. 14: System transfer function with PD control

Find the values of  and  so that the steady-state error is 0.1 and the percent overshoot 
is 10% (for a step input). 

Solution: 

With Maple

The closed loop transfer function is 

Comparing this transfer function with Eq. (18) the steady state error is

This can be be used to find the required  value. For a steady state error of 0.1,



(3.3.2)(3.3.2)

(5.1.4)(5.1.4)

(2.2.2.1)(2.2.2.1)

(5.1.6)(5.1.6)

(5.1.5)(5.1.5)

(5.1.3)(5.1.3)

(5.1.2)(5.1.2)
Assuming that this transfer function can be treated as a second order system by ignoring

the effect of the zero, the natural frequency of the system is 

and the damping ratio is

at 5 digits

0.59115
These two parameters can be used to calculate the required  value. 

The following plot shows the original step response without a controller, the step 

response with a PD controller and the calculated controller gains, and the step response 

with the approximate second order system used to calculate the controller gains. 

PlotPlot



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

The specifications are not exactly met due to the zero, as can be seen from the plot. A 

negative zero located on the real axis is equivalent to adding the impulse response of the

second order system. So the overshoot in this case is greater than the required 

decays very quickly. The following plot shows the pole and zero locations. 



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

The following plot and gauge can be used to fine tune the controller to get the required 
 value (approximately 0.9 for this case). 



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

With MapleSim

Constructing the Model

Step 1: Insert Components

Drag the following components into the workspace:

Table 1: Components and locations

Component Location

Signal Blocks
> Common

Signal Blocks
> Common



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

(2 required)

Signal Blocks
> Common

Signal Blocks
> 

Mathematical
> Functions

Signal Blocks
> Common

Signal Blocks
> Continuous

Step 2: Connect the components

Connect the components as shown in the following diagram:



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

3. 3. 

1. 1. 

2. 2. 

Fig. 15: Component diagram

Step 3: Set up the components

Click the proportional Gain component (  in the diagram) and enter a value for 
the gain ( ). 
Click the derivative Gain component (  in the diagram) and enter a value for the
gain ( ). 
Click the Transfer Function component and enter [ ] for  and [ ] for .

The gain values that satisfy the required specifications can be found using a systematic 

trial and error approach. The approximate values calculated in the previous subsection 

can be used as a starting point. To better understand the behavior of the system, one of 

the various other types of input signals (available under Sources in the component 

library) can also be used instead of the step input. 

Simulation of an equivalent physical model

In the problem statement, the transfer function of the system is provided without any 

details of the physical system that it represents. There are many possible systems 

that this second order transfer function could represent. For example, it could 

represent a machine component modeled as a spring mass system with viscous 

damping and the following parameters:

 
Table 2: Spring-mass system parameters

Parameters Value

Mass,  kg

Spring 



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

constant, 
 N/m

Damping 
coefficient, 

N$s/m

This subsection shows how this problem can be simulated if this physical system was 

specified instead of the transfer function.

Constructing the model

Step1: Insert Components

Drag the following components into the workspace:

Table 3: Components and locations

Compon
ent

Location

Signal 
Blocks > 
Common

Signal 
Blocks > 
Common

(2 
required)

Signal 
Blocks > 
Common

Signal 
Blocks > 

Mathematic
al > 

Functions



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

Signal 
Blocks > 
Common

1-D 
Mechanical

 > 
Translation
al > Force 

Drivers

1-D 
Mechanical

 > 
Translation

al > 
Common 

1-D 
Mechanical

 > 
Translation

al > 
Common 

1-D 
Mechanical

 > 
Translation

al > 
Common 

1-D 
Mechanical

 > 
Translation

al > 
Sensors

Step 2: Connect the components

Connect the components as shown in the following diagram (the dashed boxes are

not part of the model, they have been drawn on top to help make it clear what the 

different components are for). 



2. 2. 

1. 1. 

(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

4. 4. 

2. 2. 

1. 1. 

3. 3. 

 Fig. 16: Component diagram

Step 3: Set parameters and initial conditions

Click the proportional Gain component and enter a value for the gain ( ). 
Click the derivative Gain component and enter a value for the gain ( ). 

Click the Translational Spring Damper component and enter  N/m for the 

spring constant ( ) and 1  N/m for the damping constant ( ).

Click the Mass component and enter 1  kg for the mass ( ), 0 m/s for the 

initial velocity ( ) and 0 m for the initial position ( ). Select the check marks 

that enforce these initial condition.

Step 4: Run the Simulation

Attach a Probe to the Mass component as shown in Fig. 16. Click this probe 

and select Length in the Inspector tab. This will show the position of the 

mass as a function of time. 

Click Run Simulation ( ).

This simulation will provide the same results as the simulation using the transfer 

function.  



(3.3.2)(3.3.2)

(2.2.2.1)(2.2.2.1)

Reference:
G.F. Franklin et al. "Feedback Control of Dynamic Systems", 5th Edition. Upper Saddle River, 
NJ, 2006, Pearson Education, Inc.


